

The C-2 Selective Azide Opening Reaction of *trans-2,3-Epoxy Alcohols* by NaN₃ and PhB(OH)₂

Hiroyuki Hayakawa, Naoko Okada, Masahiro Miyazawa, and Masaaki Miyashita*

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 18 March 1999; revised 12 April 1999; accepted 16 April 1999

Abstract: The azide opening reaction of trans-2,3-epoxy alcohols with NaN3 and PhB(OH)2 in DMF occurred regio- and stereoselectively at the C-2 position giving rise to phenylboronates of trans-2-azido-1,3-diols in high yields. © 1999 Elsevier Science Ltd. All rights reserved.

Stereoselective epoxide-opening reactions have been recognized as one of the most important transformations in organic synthesis.¹ Among them, the azide opening reaction of 2,3-epoxy alcohols has gained importance in context with the synthesis of biologically active molecules.² Although various methods / reagents such as Me₃SiN₃-Et₂AlF,³ NaN₃-NH₄Cl,⁴ NaN₃ supported on calcium zeolite,⁵ [Ti(O-i-Pr)₂(N₃)₂],⁶ Bu₃SnN₃,⁷ Ti(O-i-Pr)₄-Me₃SiN₃,⁸ Et₂AlN₃,⁹ etc. have been developed for the purpose, the regioselectivity in these azide opening reactions is restricted only at the C-3 position. On the other hand, examples pertaining to the C-2 selective azide opening of 2,3-epoxy alcohols are few, though isolated cases arising out of steric requirements⁴ or the use of 2-trimethylsilyl-2,3-epoxy alcohols¹⁰ have been reported. We have now developed a methodology to achieve the C-2 selective azide opening of *trans*-2,3-epoxy alcohols by the combination of NaN₃ and phenylboronic acid (PhB(OH)₂).

Although the C-2 selective azide opening reaction of 2,3-epoxy alcohols devoid of any steric and/or electronic bias has never been reported, we anticipated that the ring opening of such epoxy alcohols with NaN3 and PhB(OH)₂ may occur regioselectively at the C-2 position by directing effect of PhB(OH)₂, as shown in Scheme 1. Indeed, this was realized in practice very efficiently by using 3 equiv. of NaN3 and 2 equiv. of PhB(OH)₂ in hot DMF to provide phenylboronates of the corresponding 2-azido-1,3-diols in high yields.

Scheme 1

The representative results are summarized in Table 1. As shown, the ring-opening reactions of trans-4-benzyloxy- and trans-5-benzyloxy-2,3-epoxy alcohols with NaN3 and PhB(OH)₂ occurred exclusively at the C-2 position to give phenylboronates of trans-2-azido-1,3-diols as a single product in 99% and 94% yields, respectively (entries 1 and 2). Similarly, the reaction of an analogous substrate having a silyloxy group proceeded cleanly to afford the C-2 azido-compound predominantly (entry 3). Thus, all the reactions of disubstituted trans-2,3-epoxy alcohols with NaN3 and PhB(OH)₂ provided the corresponding phenylboronates of trans-2-azido-1,3-diols exclusively or predominantly (entries 1-5). The stereochemistry of the derived products were confirmed unambigously by NMR analyses and sodium periodate oxidation of the corresponding diols.¹¹ It is noteworthy that the phenylboronates thus obtained were very stable and could be easily purified by silica gel column chromatography and stored in a refrigerator for a long time without any appreciable decomposition.¹²

In contrast to the reactions of trans-2,3-epoxy alcohols, the corresponding cis-analogs were found to react sluggishly to provide lower yields of products presumably due to steric hindrance, though the reaction furnished the C-2 azide as the major product (entry 7). The result in Table 1 also demonstrates that the substrates having an ether oxygen in the side chain react faster and with higher regioselectivity than those having no such functionality (entries 1 and 2 vs. entries 4 and 5), which can be accounted for the chelation effect. It is also evident that the regioselectivity was not observed in the reaction of a trisubstituted trans-2,3-epoxy alcohol (entry 6).

It is of interest to note that the present procedure is the first example in realizing the C-2 selective azide opening reaction of disubstituted *trans*-2,3-epoxy alcohols having no particular steric and electronic bias. It may be noted that the reactions of *trans*-4-benzyloxy-2,3-epoxy alcohol (the substrate in entry 1) with [Ti(O-*i*-Pr)₂(N₃)₂] in benzene (70 °C) and with NaN₃-NH₄Cl in aqueous 2-methoxyethanol (124 °C) have been studied by Sharpless et al. to give a 6:1 and 1:1 mixture of the corresponding C-3 and C-2 azido-isomers, respectively.⁶ They have also observed that the reactions of *trans*-2,3-epoxy-1-hexanol (the substrate in entry 4) with [Ti(O-*i*-Pr)₂(N₃)₂] in benzene (70 °C) and with NaN₃-NH₄Cl in aqueous MeOH (65 °C) gave a 5.8:1 and 36:1 mixture of the corresponding C-3 and C-2 azides, respectively.⁶ Thus, the former methods/reagents have been known to produce 3-azido-1,2-diols regioselectively or predominantly.

In conclusion, we have developed a highly C-2 selective azide opening reaction of trans-2,3-epoxy alcohols through a combination of NaN₃ and PhB(OH)₂. Since a wide variety of optically active 2,3-epoxy alcohols are readily available via the Katsuki-Sharpless asymmetric epoxidation, ¹³ the present method will provide a convenient and selective way to prepare the phenylboronates of trans-2-azido-1,3-diols, thereby making it very useful in organic synthesis.

Table 1. Reaction of 2,3-Epoxy Alcohols with NaN₃ and PhB(OH)₂ in DMF.^{a)}

Entry	Substrate	Time (h)	Product Isolated Yield
1	ВпО	4.5	BnO 99%
2	BnO OH b)	18	BnO N ₃ 94%
3	твомѕо	7	TBDMSO TBDMSO N3 77% 13% Ph
4,	~~~он	27	Ph + N ₃ N ₃ 78% 22%
5	√ Он	48 ^{c)}	Ph N ₃ 81% 14%
6	ВпО	44	Bno Bno Ph 86% (5 : 7) ^{d)}
7	ВпОДОН	65	BnO + BnO N3 Ph

a) The reaction was carried out using NaN₃ (3 equiv.) and PhB(OH)₂ (2 equiv.) in DMF at 70°C.

b) A chiral substrate.

c) The reaction was carried out using NaN₃ (2 equiv.) and PhB(OH)₂ (1.3 equiv.) in DMF at 70°C.

d) An inseparable mixture.

Acknowledgment. We are grateful to the Ciba-Geigy Foundation (Japan) for the Promotion of Science for financial support. This work was also supported by a Grant-in-Aid for JSPS Fellows (No. 2709) and Grants-in-Aid for Scientific Research on Priority Areas (No. 706: Dynamic Control of Stereochemistry and No. 08245101) from the Ministry of Education, Science, Sports and Culture of Japan.

References

- G. H. Posner, Org. React. (N. Y.), 1975, 22, 253; P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, and S. M. Viti, J. Org. Chem., 1982, 47, 1378; T. Suzuki, H. Saimoto, H. Tomioka, K. Oshima, and H. Nozaki, Tetrahedron Lett., 1982, 23, 3597; B. H. Lipshutz, R. S. Wilhelm, J. A. Kozlowski, and D. Parker, J. Org. Chem., 1984, 49, 3928; M. Onaka, K. Sugita, H. Takeuchi, and Y. Izumi, J. Chem. Soc. Chem. Commun., 1988, 1173; Comprehensive Organic Synthesis, Ed., B. M. Trost, Vol. 3, "Carbon-Carbon σ-Bond Formation", Ed., G. Pattenden, Pergamon Press (1991); C. Bonini and G. Righi, Synthesis, 1994, 225.
- M. Pastó, P. Castejón, A. Moyano, M. A. Pericàs, and A. Riera, J. Org. Chem., 1996, 61, 6033; F. Benedetti, S. Miertus, S. Norbedo, A. Tossi, and P. Zlatoidzky, J. Org. Chem., 1997, 62, 9348; J. Jurczak, "Preparative Carbohydrate Chemistry" S. Hannesian, Ed., New York, Marcel Dekker, 595 (1997).
- 3 K. Maruoka, H. Sano, and H. Yamamoto, Chem. Lett., 1985, 599.
- 4 C. H. Behrens and K. B. Sharpless, J. Org. Chem., 1985, 50, 5696.
- 5 M. Onaka, K. Sugita, and Y. Izumi, Chem. Lett., 1986, 1327.
- 6 M. Caron, P. R. Carlier, and K. B. Sharpless, J. Org. Chem., 1988, 53, 5185.
- 7 S. Saito, S. Yamashita, T. Nishikawa, Y. Yokoyama, M. Inaba, and T. Moriwake, *Tetrahedron Lett.*, 1989, 30, 4153.
- 8 K. I. Sutowardoyo, M. Emziane, P. Lhoste, and D. Sinou, Tetrahedron, 1991, 47, 1435.
- 9 F. Benedetti, F. Berti, and S. Norbedo, Tetrahedron Lett., 1998, 39, 7971.
- 10 T. K. Chakraborty and G. V. Reddy, Tetrahedron Lett., 1991, 32, 679.
- 11 The stereochemistry of two phenylboronates in entry 7 was confirmed by identification with that of authentic samples which were synthesized by phenylboronation of the corresponding 2-azido-1,3-diol and 3-azido-1,2-diol, respectively, readily prepared according to ref. 6.
- 12 The boronates are hydrolyzed to the corresponding diols by treatment with pinacol or 1,3-propanediol in aqueous acetone.
- 13 Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765; T. Katsuki and V. S. Martin, Org. React., 1996, 48, 1.